Graph Neural Networks for Spatial Clustering and Classification

By: Aidan Gao Mentored by: Junhong Lin Special Thanks to: Julian Shun

Background

Graph Neural Networks

02

Spatial Clustering

03

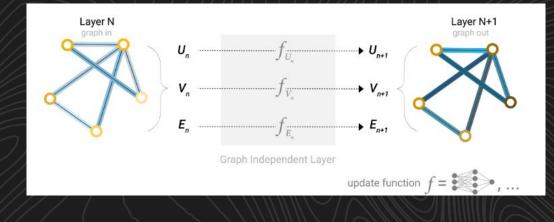
K Nearest Neighbors

Previous Work

Graph Neural Networks

What's a Graph Neural Network?

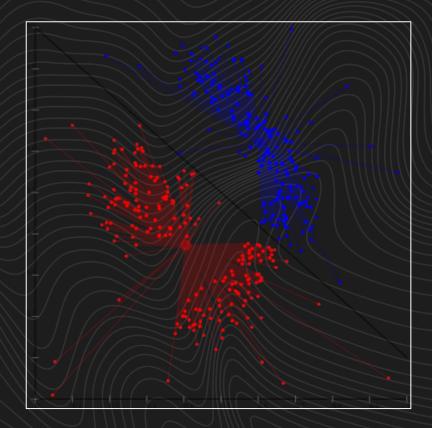
A trainable transform on a all aspects of a graph that is permutation invariant



Left - An example of a basic graph neural network. Nodes, and edges are updated through a basic MLP

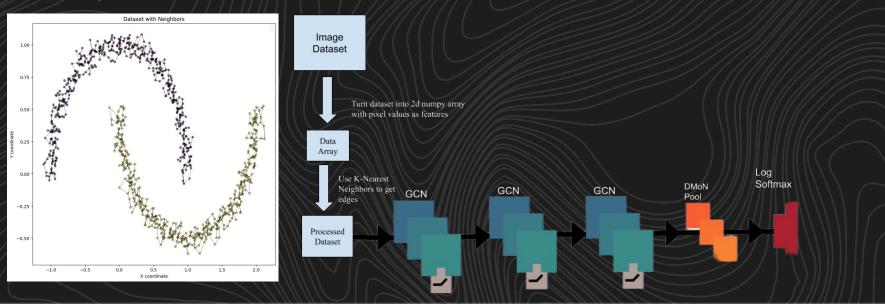
Spatial Clustering

- Instead of dealing with graphs, spatial clustering deals with points in space,
- This is the main form of clustering in literature
- Examples: K-means, DBScan, etc.



K - Nearest Neighbors

- Information is typically retrieved from neighbors in graphs, but such information isn't available.
- By using a spatial clustering algorithm to create edges between nodes (usually k-nearest neighbors), we can utilize a graph neural network for classification and clustering on spatial datasets.

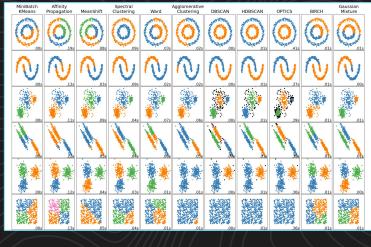


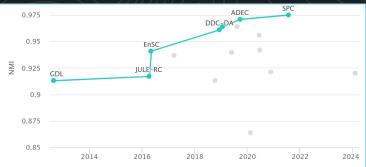
Previous Work

- There exists many works on spatial clustering, on the same datasets.
- There also exists some work on clustering with graph neural networks
- Recently, there has been work done in spatial clustering with graph neural networks, mainly a paper on cell spatial clustering

Cell clustering for spatial transcriptomics data with graph neural networks

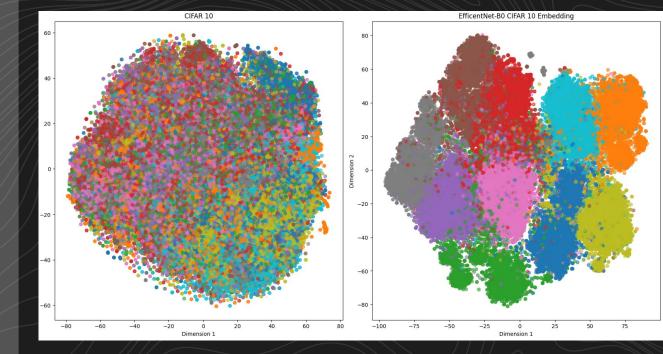
Li, J., Chen, S., Pan, X. *et al.* Cell clustering for spatial transcriptomics data with graph neural networks. *Nat Comput Sci* 2, 399–408 (2022). https://doi.org/10.1038/s43588-022-00266-5





Methods

CNN Embedding



 CNN embedding reduces dimensionality and enhances features

DMoN Operator

Purpose:

1

The DMoN operator is combination of loss and clustering assignment functions that aims to optimize soft cluster assignments for graphs

Given cluster assignments C from a model, a GCN in the paper's case, the DMoN operator is defined as the following:

$$\mathcal{L}_{\text{DMoN}}(\mathbf{C}; \mathbf{A}) = \underbrace{-\frac{1}{2m} \operatorname{Tr}(\mathbf{C}^{\top} \mathbf{B} \mathbf{C})}_{\text{modularity}} + \underbrace{\frac{\sqrt{k}}{n} \left\| \sum_{i} \mathbf{C}_{i}^{\top} \right\|_{F}}_{\text{collapse regularization}} - 1,$$

Where A is the normalized adjacency matrix.

In addition to optimizing clustering assignments, it also returns the spectral and collapse regularization loss.

Spatial Clustering with GNNs

Supervised Learning

Analogous to image classification

Contributions

CNN-GNN classification that beats state of the art and introduces graph augmented predictions

Unsupervised Learning

In line with spatial clustering literature

Contributions

GNN based clustering that beats baselines and embeddings/transforms that make models competitive with state of the art

GNNs Used

GCN

Aggregates information from neighbors like CNN

handles Isomorphism and improves power

GIN

GAT

GNN with attention mechanism

NAGPhormer

Node adaptive attention transformer

HGT

Node/edge attention on heterogeneous graphs

SuperGAT

Self-supervised attention

CNN-GNN Framework

Data Normalized

Data is normalized and an edge index is built via KNN

A pretrained or untrained CNN reduces dimensionality

Models Trained

The CNN/GNN are trained on training set

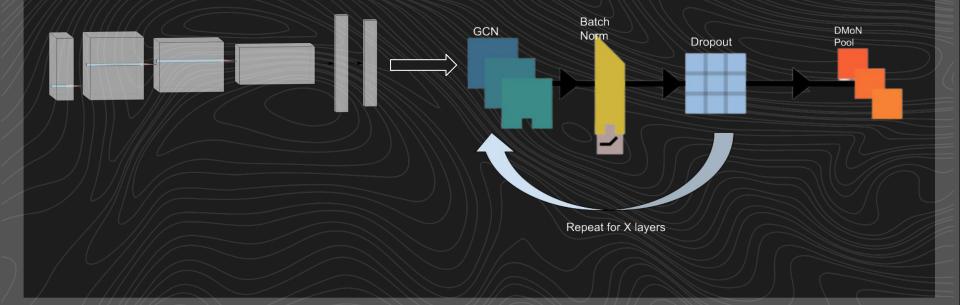
GNN Classifies

The final GNN performs clustering/node classification

Supervised

01

CNN-GNN Architecture



99.96% MNIST

#1 on State of the Art

99.67% CIFAR

#1 on State of the Art

91.1% Imagenet*

#2 on State of the Art

*only 100k samples used

Unsupervised

Unsupervised Losses

Orthogonal Loss

Unsupervised loss that encourages orthogonality between rows and columns in weight matrices to encourage more diversity

02 Clustering Loss

Encourages balanced clusters via Frobenius norm of gram matrix of cluster assignments

03 Spectral Loss

Sums modularity diagonally to provide clustering quality based on intra vs extra node connections

04 Collapse Regularization Loss

Sums modularity diagonally to provide clustering quality based on intra vs extra node connections

Unsupervised Data Processing

No Outside Information

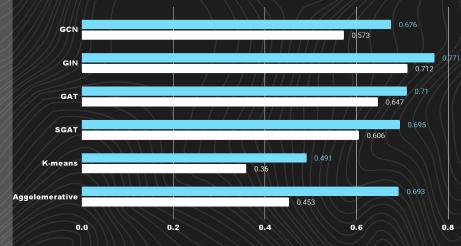
- Once again, the graph is built with KNN, and planar graphs are also tested
- Once the graph is built, the main dimensionality reduction method used is Umap
- Various GNNs can also be used as trainable data transforms

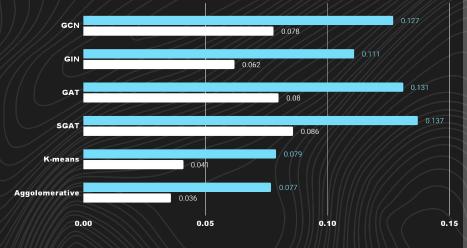
Outside Information

- The graph construction is still built with a KNN, before or after the transform
- A CNN pretrained on general information embeds data
- Umap/GNNs can be used as further dimensionality reductions

GNN Baselines (No Outside Information)

MNIST





ARI

Over 2x top baseline for CIFAR 10 and 1.5 x on MNIST

NMI

1.5x top baseline for CIFAR 10 and 1.1 x on MNIST

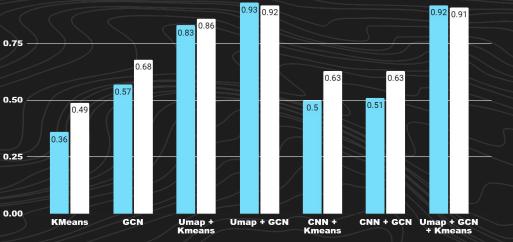
No Prior Information

1.00

- Testing on MNIST with K-means/GCN
- Umap significantly improves model accuracy to be competitive with state of the art
- CNNs and GCNs can both be used as transforms, but function better when data is more distinct
- Due to its learnability a GNN functions better as an end classifier than static baselines

ARI Not Measured in most papers

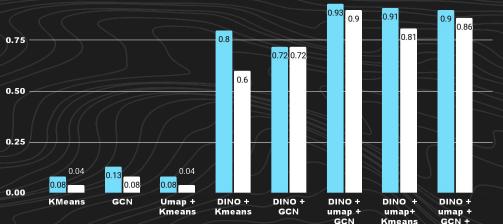
NMI Top 10 amongst leaderboards



Prior Information

1.00

- Testing on CIFAR with Dino V2 L, K-means/GCN
- Umap functions as a feature enhancer and is only useful when features are already distinguished
- Pre Learned CNN Architecture very powerful for separating features as an embedding



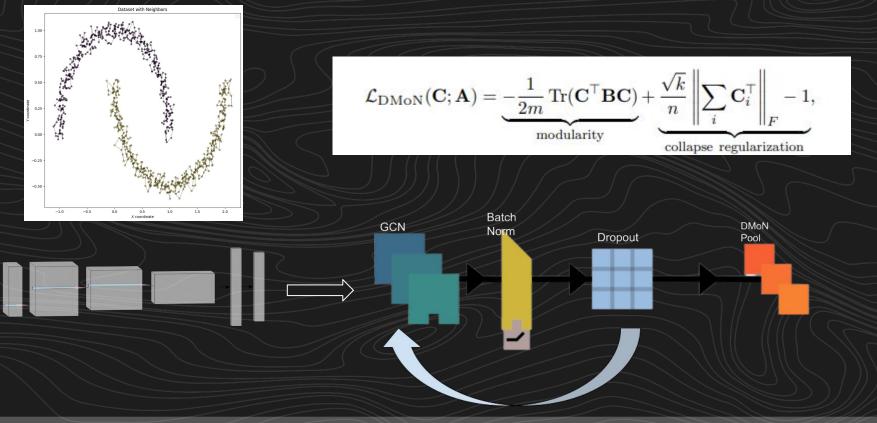
Kmeans

ARI #3 in CIFAR 10 leaderboards

#2 in CIFAR 10 leaderboards

NMI

Conclusion



Acknowledgements

- Thanks to my mentor, Junhong Lin, for supporting and guiding my research
- Thanks to PRIMES, for giving me this continued opportunity
- Thanks to Julian Shun for giving me high level feedback
- Thanks to my parents and friends for supporting me during my research

Any Questions?